Photoluminescence properties of Y₂O₃ co-doped with Eu and Bi compounds as red-emitting phosphor for white LED

W. J. Park · S. G. Yoon · D. H. Yoon

© Springer Science + Business Media, LLC 2006

Abstract Bismuth doped Y_2O_3 : Eu was used as a red phosphor with a very high efficiency and an appropriate emission wavelength of around 310–400 nm. This red phosphor was synthesized by the solid state reaction which is normally used in the field of white LEDs. In this study, we synthesized Y_2O_3 : Eu, Bi phosphors using a solid state reaction. We investigated the effect of the Eu³⁺ and Bi³⁺ concentrations and additive fluxes on the emission characteristics. The fabricated phosphors were investigated by analyzing their particle size and crystal structure with scanning electron microscopy and X-ray diffraction (XRD). Their photoluminescence (PL) spectra were also measured at room temperature.

Keywords Red-emitting phosphor \cdot White light emitting diode \cdot Y_2O_3 co-doped Eu and Bi \cdot Photoluminescence properties

1 Introduction

A three-band white-light-emitting diode (LED) consists of an LED device that emits either soft ultraviolet (UV) or blue light, and red-green-blue (RGB) phosphors [1–3]. For the development of the three-band white LEDs, InGaN and GaN chips have been both considered as excitation sources for the RGB phosphors. In this case, either organic dyes or inorganic phosphors can be used as the RGB components for the three band white LEDs [1–4]. However, the inorganic phosphors have some environmental problems during their preparation and use, because they include toxic elements, such as sulfur, chlorine, and cadmium [2–4]. To solve these problems, in the present study, we attempted to develop new oxide for RGB phosphors, bismuth doped Y_2O_3 : Eu, which was used as the red phosphor with a very high efficiency and an appropriate emission wavelength of around 340–400 nm. This red phosphor was synthesized by the solid state reaction with flux, which is normally used for the fabrication of white LEDs.

In this study, we investigated the effect of the Eu^{3+} and Bi^{3+} concentrations and additive fluxes on the emission characteristics of the fabricated phosphors, and the particle size and crystal structure were also investigated.

2 Experimental procedure

Bi doped Y_2O_3 : Eu compounds were prepared by the conventional solid-state reaction. Eu and Bi ions were added in the form of Eu₂O₃ and Bi₂O₃, respectively. Commercially available high purity reagents (99.99%) of Y_2O_3 , Eu₂O₃, Bi₂O₃, H₃BO₃ and BaCl₂·2H₂O were used for the production of the samples. In each case, the total weight of the powders was 10 g, and the powders were mixed together using an alumina mortar and pestle. The mixed batches were fired in an alumina crucible at 1100°C for 3 h in air. The fired specimens were ground using an alumina mortar and pestle, followed by washing and drying procedure. The dried powders were sieved to classify the powder size for the photoluminescence system measurements.

The emission and excitation spectra were measured at room temperature using a fluorescence spectrophotometer in the ranges of 550–700 nm and 250–550 nm, respectively. The crystalline phases of the synthesized samples were characterized by an X-ray diffractometer (CuK_{α}, 30 KV, 100 mA, Rigaku) and the surface morphologies were observed using a scanning electron microscope (ESEM, XL-30, Philips).

W. J. Park (⊠) · S. G. Yoon · D. H. Yoon Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon, Korea e-mail: wjpark@skku.edu

Fig. 1 X-ray diffraction pattern of bismuth co-doped Y_2O_3 : Eu fired at 1100°C for 3 h in air

3 Results and discussion

The XRD pattern of Y_2O_3 sample co-doped with Eu and Bi is presented in Fig. 1. According to JCPDS card 41-1105, pure Y_2O_3 has a cubic crystal structure with the Ia3(206) space group, and its lattice parameter is 1.641 nm. Only a single cubic phase was identified from XRD measurement without having any extraneous phase and the doped Eu and Bi ions had little influence on the host Y_2O_3 structure. It was concluded that the co-doping with Eu and Bi increased the lattice parameters of the phosphor, due to the fact that the ionic radius of Y^{3+} (0.088 nm) is slightly lower than those of Eu³⁺ (0.109 nm) and Bi³⁺ (0.196 nm). Eu³⁺ and Bi³⁺ ions were expected to occupy the Y^{3+} sites in this phosphor. It is believed that this single phase was successfully developed through our preparation procedure.

Figure 2 shows the emission and excitation spectra of Y_2O_3 co-doped with Eu³⁺, Bi³⁺ measured at room temperature. The emission spectrum exhibited a narrow band

Fig. 2 Emission ($\lambda_{ex} = 375$ nm) and excitation ($\lambda_{em} = 614$ nm) spectra of Y₂O₃: Eu³⁺, Bi³⁺

(600-650 nm) having sharp peaks at about 610-620 nm due to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺. In addition, the excitation spectrum exhibited a broad band between 250 and 550 nm with peaks occurring about 310-400 nm and a sharp peak at 465.5 nm. Conventional Y₂O₃: Eu was not absorbed near UV efficiently. Y₂O₃: Bi exhibited absorption band at 375 nm and emission band around 410 nm because of ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition of Bi^{3+} [5–9]. When incorporated in Y₂O₃: Eu phosphors, Bi^{3+} ions act as a sensitizer for Eu^{3+} ions under 350 nm radiation. The energy transferring from Bi^{3+} ions to Eu^{3+} ions by no radiation process resulted in the final emission from excited Eu³⁺ ions. Bi³⁺ ion was introduced into the Y_2O_3 red phosphors, excitation spectra were enhanced significantly and a new band located at 350-390 because of 6 $s^2 \rightarrow 6s6p$ transition of Bi³⁺. Figure 3 shows the emission spectra ($\lambda_{ex} = 390$ nm, $\lambda_{em} = 614$ nm) of the Eu³⁺ and Bi³⁺ co-doped yttrium oxide (with a fixed Eu concentration of 3.0 mol% and variable Bi concentration or vice versa) measured at room temperature as a function of the Eu^{3+} and Bi³⁺ concentrations.

With increasing Eu³⁺ concentration, the relative intensity of the red emission was continuously increased. However, with increasing Bi³⁺ concentration, the intensity of the red emission was increased and reached a maximum at a Bi³⁺ concentration of 3.5 mol %. Above this concentration, the intensity of the red emission decreased. Because of the energy transferred from the Eu³⁺ to the Bi³⁺ ions, the emission intensity of the Bi³⁺ ions increased, while that of the Eu³⁺ ions decreased in the Eu³⁺ and Bi³⁺ co-doped Y₂O₃. However, in the case where Y₂O₃: Eu was co-doped with Bi, all of the samples exhibited a strong absorption band in the near UV region because of the ¹S₀ \rightarrow ³P₁ transition of Bi³⁺, while the strong 610–620 nm emission due to Eu³⁺ was retained.

Fig. 3 Emission relative intensity ($\lambda_{ex} = 390 \text{ nm}$, $\lambda_{em} = 614 \text{ nm}$) of Eu³⁺, Bi³⁺ co-doped yttrium oxide (with a fixed Eu concentration of 3.0 mol% and variable Bi concentration or vice versa) as a function of the Eu³⁺ and Bi³⁺ concentrations

Fig. 4 Relative emission intensity of $Y_2O_3:Eu^{3+}$, Bi^{3+} at 614 nm with and without the H_3BO_3 and $BaCl_2 \cdot 2H_2O$ fluxes

Figure 4 shows the relative emission intensity of $Y_2O_3:Eu^{3+}$, Bi^{3+} with or without H_3BO_3 and $BaCl_2\cdot 2H_2O_3$ flux at 614 nm. The relative emission intensity of Y_2O_3 : Eu³⁺, Bi³⁺containing 0.43 mol% H₃BO₃was slightly higher than that of the base composition sample. The relative emission intensity of Bi³⁺co-doped Y₂O₃:Eu³⁺, containing 2.08 mol% BaCl₂·2H₂O was approximately 3.3 times higher than that of the base composition sample. Furthermore, H₃BO₃ was added to the Bi³⁺co-doped Y₂O₃:Eu³⁺ 2.08 mol% BaCl₂·2H₂O sample in order to improve the emission intensity. The relative emission intensity of Y_2O_3 :Eu³⁺, Bi³⁺ containing 0.43 mol% H₃BO₃ and 2.08 mol% BaCl₂·2H₂O was approximately 6.4 times higher than that of the base composition sample. This improvement in the emission intensity associated with the Eu^{3+} and Bi^{3+} ions in the Y_2O_3 samples was attributed to the synergetic effect afforded by the H₃BO₃ and BaCl₂·2H₂O fluxes.

Figure 5(a) shows the SEM image of the Y_2O_3 : Eu³⁺, Bi³⁺ base composition samples. Spherically shaped crystals with

diameters of less than 300 nm grew and became hard and aggregated, having to be partially broken up again in a mortar. The samples were uniform without a visible admixture of any impurity phases. Figure 5(b) shows the SEM image of the sample containing 0.43 mol% H₃BO₃ and 2.08 mol% BaCl₂·2H₂O. The phosphor particles grew to achieve diameters of 400–800 nm. Also, the Y₂O₃: Eu³⁺, Bi³⁺ phosphor particles containing the fluxes exhibited no aggregation and had regular morphology characteristics without any visible admixture of any impurity phases. It was observed that the small sized Bi³⁺ co-doped Y₂O₃: Eu³⁺ particles exhibited poor luminescence intensity, but that when the particle size grew due to the addition of the fluxes, the emission intensity increased by approximately 6.4 times.

4 Conclusion

The red emission properties of Bi^{3+} co-doped Y_2O_3 : Eu^{3+} prepared by the solid-state reaction were investigated, in order to verify its potential to act as the red emitting phosphor of white LEDs. The emission spectrum consisted of a narrow band at 600-650 nm, with sharp peaks occurring at about 610–620 nm due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺, while the excitation spectrum exhibited a broad band between 250 and 550 nm with peaks occurring in the range of 310-400 nm and a sharp peak being observed at 465.5 nm. In the emission spectra ($\lambda_{ex} = 390$ nm) of Eu³⁺, Bi ³⁺-doped yttrium oxide with a fixed Bi concentration of 3.0 mol% and increasing Eu³⁺ concentration, the relative intensity of the red emission increased continuously. However, in the emission spectra of the Eu³⁺, Bi³⁺-doped yttrium oxide with a fixed Eu concentration of 3.0 mol% and increasing Bi³⁺ concentration, the intensity of the red emission intensity increased and reached a maximum at a Bi3+ concentration of 3.5 mol%. Above this concentration, the intensity of the red emission decreased. Also, the relative emission intensity of

Fig. 5 SEM image of (a) Eu^{3+} , Bi^{3+} co-doped yttrium oxide and (b) Eu^{3+} , Bi^{3+} co-doped yttrium oxide containing 0.43 mol% H₃BO₃ and 2.08 mol% BaCl₂·2H₂O

the Y_2O_3 :Eu³⁺, Bi³⁺ sample containing 0.43 mol% H₃BO₃ and 2.08 mol% BaCl₂·2H₂O was approximately 6.4 times higher than that of the base composition.

References

- 1. P. Schlotter, R. Schmidt, and J. Schnoider, *Appl. Phys. A: Mater. Sci. Process*, **64**, 417 (1997).
- 2. Y. Sato, N. Takahashi, and S. Sato, Jpn. Appl. Phys. Part 2, 35, L838 (1996).
- 3. Y.-D. Hun, J.-H. Shim, Y. Kim, and Y.R. Do, *J. Electrochem. Soc.*, **150**, H57 (2003).
- K.S. Sohn, J.M. Lee, and N.S. Shim, Adv. Mater., 24(15), 2081 (2003).
- 5. G. Blasse and A. Brill, J. Chem. Phys., 48, 7 (1968).
- 6. A.M. Srivastava and W. W. Beers, J. Lumin., 81, 293 (1999).
- 7. G. Blasse, Prog, Solid State Chem., 18, 79 (1998).
- M.Q. Wang, X.P. Fan, and G.H. Xiong, J. Phys. Chem. Solids, 56, 859 (1995).
- A.O. Wright, M.D. Seltzer, J.B. Gruber, and B.H.T. Chai, J. Appl. Phys., 78, 2456 (1995).